Non-normal modal logics, ALBA, and probabilities

Apostolos Tzimoulis joint work with S. Frittella, G. Greco, D. Kozhemiachenko, K. Manoorkar, and others

Workshop on Non-Classical Logic and Probabilistic Reasoning

Motivation: A probabilistic 2-layer logic (e.g. P. Baldi, P. Cintula, C. Noguera 2020)

$$
\begin{gathered}
A::=p|\top| \perp|\neg A| A \sqcap A \mid A \sqcup A \\
\phi::=\mu(A)|1| 0|\sim \phi| \phi \wedge \phi|\phi \vee \phi| \phi \oplus \phi \mid \phi \ominus \phi
\end{gathered}
$$

Motivation: A probabilistic 2-layer logic

$$
\begin{gathered}
A::=p|\top| \perp|\neg A| A \sqcap A \mid A \sqcup A \\
\phi::=\mu(A)|1| 0|\sim \phi| \phi \wedge \phi|\phi \vee \phi| \phi \oplus \phi \mid \phi \ominus \phi
\end{gathered}
$$

- Classical logic axioms for the non-modal formulas
- \oplus is associative, commutative, with 0 as neutral element
- \oplus preserves all finite non-empty meets and joins
- \oplus and \ominus are residuals of each other

Motivation: A probabilistic 2-layer logic

$$
\begin{gathered}
A::=p|\top| \perp|\neg A| A \sqcap A \mid A \sqcup A \\
\phi::=\mu(A)|1| 0|\sim \phi| \phi \wedge \phi|\phi \vee \phi| \phi \oplus \phi \mid \phi \ominus \phi
\end{gathered}
$$

A1. From $A \vdash B$ infer $\mu(A) \vdash \mu(B)$;
A2. $\mu(\neg A)$ ㄱ卜 $\sim \mu(A)$;
A3. $(\mu(A) \ominus \mu(A \wedge B)) \oplus \mu(B)$ ॥r $\mu(A \vee B)$;
Nec. from $T \vdash A$ infer $1 \vdash \mu(A)$.

Motivation: A probabilistic 2-layer logic

$$
\begin{gathered}
A::=p|\top| \perp|\neg A| A \sqcap A \mid A \sqcup A \\
\phi::=\mu(A)|1| 0|\sim \phi| \phi \wedge \phi|\phi \vee \phi| \phi \oplus \phi \mid \phi \ominus \phi
\end{gathered}
$$

- Semantic framework:
- Classical formulas are interpreted in a Boolean algebra \mathbb{B}.
- Probability formulas are interpreted on an (MV-)algebra \mathbb{C}.
- $\mu: \mathbb{B} \rightarrow \mathbb{C}$, a monotone map.

Proper Multi-type Display Calculi

- Display property:

$$
\frac{Y \vdash X>Z}{\overline{X ; Y+Z}}
$$

display rules semantically justified by adjunction/residuation

- Multi-type: Separate syntactic types for different types of semantic objects
- Proper: Rules closed under uniform substitution (Wansing '98) within each type
- Canonical proof of cut elimination (via metatheorem)

Display calculi and correspondence

1. The algorithm ALBA (properly adjusted) can transform an analytic inductive inequality into primitive quasi-inequalities.
2. Analytic rules in display calculi semantically correspond to primitive quasi-inequalities.

Display calculi and correspondence: An example

$$
\begin{array}{ll}
& \forall[\diamond \square p \leq \square \diamond p] \\
\text { iff } & \forall[\diamond \square p \leq \diamond p] \\
\text { iff } & \forall[\boldsymbol{i} \leq \diamond \square p \& \diamond p \leq \boldsymbol{m} \Rightarrow \boldsymbol{i} \leq \boldsymbol{m}] \\
\text { iff } & \forall[\boldsymbol{i} \leq \diamond \boldsymbol{j} \& \boldsymbol{j} \leq \square p \& \diamond p \leq \boldsymbol{m} \Rightarrow \boldsymbol{i} \leq \boldsymbol{m}] \\
\text { iff } & \forall[\boldsymbol{i} \leq \diamond \boldsymbol{j} \& \boldsymbol{j} \leq p \& \diamond p \leq \boldsymbol{m} \Rightarrow \boldsymbol{i} \leq \boldsymbol{m}] \\
\text { iff } & \forall[\boldsymbol{i} \leq \diamond \boldsymbol{j} \& \diamond \diamond \boldsymbol{j} \leq \boldsymbol{m} \Rightarrow \boldsymbol{i} \leq \boldsymbol{m}] \\
\text { iff } & \forall[\diamond \boldsymbol{j} \leq \diamond \diamond \boldsymbol{j}] \\
\hline \text { iff } & \forall[\diamond p \leq \diamond p] \text { (ALBA for primitive) } \\
& \cdots
\end{array} \leadsto \frac{\diamond \diamond p \vdash z}{\diamond \diamond p \vdash z} \leadsto \frac{\circ \bullet X \vdash Z}{\bullet \circ X \vdash Z} .
$$

Which logics are properly displayable?

[Kracht 96], [Ciabattoni+15], [Greco+ ${ }^{+16]}$
Complete characterization:

1. the logics of any basic normal (D)LE;
2. axiomatic extensions of these with analytic inductive inequalities:

The gaps

1. Many-sorted signature and heterogeneous connectives.
2. The connective μ is monotone not normal.
3. The connective \oplus is regular (for join preservation).

Monotone modal logic as a 2-sorted frame

A monotone neighbourhood frame [Chellas 80], [Herzig ${ }^{+}$96], [Hansen 03]

$$
\mathbb{N}:=(W, v: W \rightarrow \mathcal{P P}(W))
$$

can be represented as a 2-sorted n -frame:

$$
\mathbb{K}:=\left(X, Y, R_{\nu}, R_{\ni}, R_{\nu^{c}}, R_{\nexists}\right) \quad \text { where }
$$

- $X:=W$ and $Y:=\mathcal{P}(W)$;
- $R_{v} \subseteq X \times Y \quad w R_{v} Z \quad$ iff $Z \in v(w)$;
- $R_{\ni} \subseteq Y \times X \quad Z R_{\ni} w \quad$ iff $\quad w \in Z \quad$ for all $x \in X$ and $Z \in Y$.

```
    \(\nabla \varphi:=\langle\nu\rangle[\ni] \varphi\)
\(\mathbb{N}, w \Vdash \nabla \varphi\)
iff \(\exists Z\left(Z \in v(w) \& Z \subseteq \varphi^{\mathbb{N}}\right)\)
iff \(\exists Z\left(w R_{v} Z \& \forall z(z \in Z \Rightarrow z \Vdash \varphi)\right)\)
iff \(\exists Z\left(w R_{v} Z \& \forall z\left(Z R_{\ni} z \Rightarrow z \Vdash \varphi\right)\right)\)
iff \(\exists Z\left(w R_{v} Z \& Z \Vdash[\ni] \varphi\right)\)
iff \(\mathbb{K}, w \Vdash\langle\nu\rangle[\ni] \varphi\)
```


Monotone modal logic as a 2-sorted frame

A monotone neighbourhood frame [Chellas 80], [Herzig ${ }^{+}$96], [Hansen 03]

$$
\mathbb{N}:=(W, v: W \rightarrow \mathcal{P P}(W))
$$

can be represented as a 2-sorted n -frame:

$$
\mathbb{K}:=\left(X, Y, R_{\nu}, R_{\ni}, R_{\nu^{c}}, R_{\nexists}\right) \quad \text { where }
$$

- $X:=W$ and $Y:=\mathcal{P}(W)$;
- $R_{\nu^{c}} \subseteq X \times Y \quad w R_{\nu^{c}} Z$ iff $Z \notin v(w)$;
- $R_{\nexists} \subseteq Y \times X \quad Z R_{\nexists} w$ iff $w \notin Z \quad$ for all $x \in X$ and $Z \in Y$.

$\nabla \varphi:=\left[v^{c}\right]\langle\nexists\rangle \varphi$	
	$\mathbb{N}, w \Vdash \nabla \varphi$
iff	$\forall Z\left(Z \notin v(w) \Rightarrow \varphi^{\mathbb{N}} \nsubseteq Z\right)$
iff $\quad \forall Z\left(w R_{\nu^{c}} Z \Rightarrow \exists z\left(z \notin Z \& z \in \varphi^{\mathbb{N}}\right)\right)$	
iff $\quad \forall Z\left(w R_{\nu^{c}} Z \Rightarrow \exists z\left(Z R_{\nexists} z \& z \in \varphi^{\mathbb{N}}\right)\right)$	
iff	$\forall Z\left(w R_{\nu^{c}} Z \Rightarrow Z \Vdash\langle\nexists\rangle \varphi\right)$
iff	$\mathbb{K}, w \Vdash\left[\nu^{c}\right]\langle\nexists\rangle \varphi$

Monotone modal logic as a 2-sorted frame

A monotone neighbourhood frame [Chellas 80], [Herzig $\left.{ }^{+} 96\right]$, [Hansen 03]

$$
\mathbb{N}:=(W, v: W \rightarrow \mathcal{P} \mathcal{P}(W))
$$

can be represented as a 2-sorted n -frame:

$$
\mathbb{K}:=\left(X, Y, R_{\nu}, R_{\ni}, R_{\nu^{c}}, R_{\nexists}\right)
$$

and as a heterogeneous m-algebra:

$$
\mathbb{H}:=\left(\mathcal{P}(X), \mathcal{P}(Y),\langle v\rangle,[\ni],\left[v^{c}\right],\langle\nexists\rangle\right)
$$

- $\langle v\rangle$ and $[\ni]$ (resp. [$\left.v^{c}\right]$ and $\langle\nexists\rangle$) multi-type normal operators.

Monotone modal logic algebraically

Let $\mathbb{A}_{1}, \mathbb{A}_{2}$ be complete lattices and $\nabla: \mathbb{A}_{1} \rightarrow \mathbb{A}_{2}$ be a monotone map. We define maps:

- [Э], $\langle\nexists\rangle: \mathbb{A}_{1} \rightarrow \mathcal{P}\left(\mathbb{A}_{1}\right)$;
- $\langle v\rangle,\left[\nu^{c}\right]: \mathcal{P}\left(\mathbb{A}_{1}\right) \rightarrow \mathbb{A}_{2} ;$

$$
\begin{array}{rlrl}
{[\ni] a} & :=\{b \in \mathbb{A} \mid b \leq a\} & \langle v\rangle B:=\bigvee\{\nabla b \mid b \in B\} \\
{\left[v^{c}\right] B} & :=\bigwedge\{\nabla b \mid b \notin B\} & & \langle\nexists\rangle a:=\{b \in \mathbb{A} \mid a \not 又 b\} .
\end{array}
$$

Then $[\ni],\langle\nexists\rangle,\langle v\rangle,\left[\nu^{c}\right]$ are normal operators and

$$
\nabla a=\langle v\rangle[\ni] a=\left[v^{c}\right]\langle\nexists\rangle a .
$$

Positional translation

If \mathbb{F} is a monotone n-frame, $\varphi \Rightarrow \psi$ is an \mathcal{L}_{∇}-sequent, \mathbb{F}^{\star} its associated two-sorted n-frame, then

$$
\mathbb{F} \Vdash \varphi \Rightarrow \psi \quad \text { iff } \quad \mathbb{F}^{\star} \Vdash \tau(\varphi \Rightarrow \psi)
$$

$\tau(\varphi \Rightarrow \psi)$					
$\tau_{1}(p)$	$:=$	p	$\tau_{1}(\varphi) \vdash \tau_{2}(\psi)$		
$\tau_{1}(\varphi \wedge \psi)$	$:=$	$\tau_{1}(\varphi) \wedge \tau_{1}(\psi)$	$\tau_{2}(\varphi \wedge \psi)$	$:=$	p
$\tau_{1}(\nabla \varphi)$	$:=$	$\langle v\rangle[\ni] \tau_{1}(\varphi)$	$\tau_{2}(\nabla \varphi)$	$:=$	$\left[v^{c}\right]\langle\not \supset\rangle \tau_{2}(\varphi)$

- Positional translation allows us to transform more sequents into analytic inductive sequents.

Display calculi and correspondence revisited (CGPT21)

Correspondence-theoretic characterizations such as the following are well known [Hansen 03]:

$$
\mathbb{F} \vDash \nabla p \rightarrow p \quad \text { iff } \quad \forall x \forall Z[Z \in v(x) \Rightarrow x \in Z] .
$$

Translation to multi-type: $\nabla p \rightarrow p \leadsto\langle v\rangle[\ni] p \rightarrow p$, which is Sahlqvist (in fact also analytic), so ALBA will succeed.

$$
\begin{array}{lll}
& \forall p[\langle v\rangle[\ni] p \leq p] & \\
\text { iff } & \forall \boldsymbol{j} \forall \boldsymbol{m} \forall p[(\boldsymbol{j} \leq[\ni] p \& p \leq \boldsymbol{m}) \Rightarrow\langle v\rangle \mathbf{j} \leq \boldsymbol{m}] & \text { First approx. } \\
\text { iff } & \forall \boldsymbol{j} \forall \boldsymbol{m}[\boldsymbol{j} \leq[\ni] \boldsymbol{m} \Rightarrow\langle v\rangle \mathbf{j} \leq \boldsymbol{m}] & \text { Ackermann } \\
\text { iff } & \forall \boldsymbol{j} \forall \boldsymbol{m}[\langle\in\rangle \boldsymbol{j} \leq \boldsymbol{m} \Rightarrow\langle v\rangle \mathbf{j} \leq \boldsymbol{m}] & \text { Adjunction } \\
\text { iff } & \forall \boldsymbol{j}[\langle v\rangle \boldsymbol{j} \leq\langle\epsilon\rangle \boldsymbol{j}] & \text { Ackermann }
\end{array}
$$

which yields the following structural rule:

$$
\frac{\langle\hat{\epsilon}\rangle \Gamma \vdash X}{\langle\hat{v}\rangle \Gamma \vdash X}
$$

Multi-type language

The language of the multi-type display calculus for \mathbf{L}_{∇} is as follows:

$$
\begin{aligned}
& \mathrm{S}\left\{\begin{array}{l}
A:=p|\mathrm{~T}| \perp|\neg A| A \sqcap A|\langle v\rangle \alpha|\left[\nu^{c}\right] \alpha \\
X:=A|\hat{\uparrow}| \check{亡}|\tilde{\neg} X| X \hat{\Pi} X|X \check{~ ப ̌ ~} X|\langle\hat{v}\rangle \Gamma\left|\left[\check{\nu}^{c}\right] \Gamma\right|\langle\hat{\epsilon}\rangle \Gamma \mid[\check{\not ㇒}] \Gamma
\end{array}\right. \\
& \mathrm{N}\left\{\begin{array}{l}
\alpha:=[\ni] A \mid\langle\nexists\rangle A \\
\Gamma:=\alpha|\hat{1}| \check{0}|\approx \Gamma| \Gamma \hat{\cap} \Gamma|\Gamma \check{\sim} \Gamma|[\check{Э}] X|\langle\hat{\nexists}\rangle X|[\check{\sim}] X \mid\left\langle\hat{\Lambda}^{c}\right\rangle X
\end{array}\right.
\end{aligned}
$$

Basic multi-type proper display calculus

Pure S-type and N-type calculi + multi-type fragment:

- Display postulates

$$
\xlongequal[{\Gamma \vdash[\check{\jmath}]} X]{\langle\hat{v}\rangle \Gamma \vdash X} \frac{\langle\hat{\ni}\rangle X+\Gamma}{S+[\check{\epsilon}] \Gamma} \xlongequal[{X \vdash[\check{v}]} \Gamma]{\left.\frac{\langle\hat{\varkappa}\rangle X \vdash \Gamma}{\Gamma \vdash[\xi}\right] X}
$$

- Logical rules

$$
\begin{aligned}
& \frac{\langle\hat{v}\rangle \alpha \vdash X}{\langle v\rangle \alpha \vdash X} \\
& \frac{A \vdash \mathcal{L}}{\langle\hat{v}\rangle \Gamma \vdash\langle v\rangle \alpha} \\
& \frac{A \vdash X}{[\ni] A \vdash[\ni ૅ] X} \frac{\Gamma \vdash[\ni ૅ] A}{\Gamma \vdash[\ni] A}
\end{aligned}
$$

Axiomatic extensions of monotone modal logic

$$
\begin{aligned}
\mathrm{N} \frac{\langle\hat{\nexists\rangle}\rangle \hat{\top} \vdash \Gamma}{\hat{\top} \vdash\left[\check{v}^{c}\right] \Gamma} & \mathrm{C} \frac{\langle\hat{\nexists}\rangle(\langle\hat{\epsilon}\rangle \Gamma \hat{\Pi}\langle\hat{\epsilon}\rangle \Delta) \vdash \Theta}{\langle\hat{v}\rangle \Gamma \hat{\Pi}\langle\hat{v}\rangle \Delta \vdash\left[\check{v}^{c}\right] \Theta}
\end{aligned} \quad \mathrm{D} \frac{\Gamma \vdash[\check{Э}] \tilde{\sim}\langle\hat{\epsilon}\rangle \Delta}{\langle\hat{v}\rangle \Delta \vdash \tilde{\neg}\langle\hat{\hat{\gamma}}\rangle \Gamma}
$$

ALBA rules

1. First approximation:

$$
\frac{\phi \leq \psi}{\boldsymbol{i}_{0} \leq \phi \quad \psi \leq \boldsymbol{m}_{0}}
$$

2. Adjunction rules:

$$
\frac{\chi \leq \psi_{1} \oplus \psi_{2}}{\chi \ominus \psi_{2} \leq \psi_{1}}
$$

3. Approximation rules:

$$
\frac{\psi_{1} \oplus \psi_{2} \leq \boldsymbol{m}}{\psi_{1} \oplus \boldsymbol{n} \leq \boldsymbol{m} \quad \psi_{2} \leq \boldsymbol{n}}
$$

4. Ackermann rule:

$$
\frac{\alpha \leq p \& \beta(p) \leq \gamma(p) \Rightarrow \boldsymbol{i} \leq \boldsymbol{m}}{\beta(\alpha) \leq \gamma(\alpha) \Rightarrow \boldsymbol{i} \leq \boldsymbol{m}}
$$

ALBA rules for regular connectives (PSZ16)

- Adjunction rules (only for unary regular connectives):

$$
\frac{f(\phi) \leq \psi}{f(\perp) \leq \psi \quad \phi \leq \mathbf{\Xi}_{f} \psi}
$$

- Approximation rules:

$$
\begin{gathered}
\frac{\boldsymbol{i} \leq f(\phi)}{[\boldsymbol{i} \leq f(\perp)] \quad \mathcal{\gamma} \quad[\boldsymbol{j} \leq \phi \quad \boldsymbol{i} \leq f(\boldsymbol{j})]} \\
\underset{\substack{\text { P } \leq \epsilon_{k}^{+}, N \leq \epsilon_{k}^{-}}}{\boldsymbol{\mathcal { i }} \leq k\left(\overline{\boldsymbol{\epsilon}}_{\epsilon_{k}^{+}}, \bar{\psi}_{\epsilon_{k}^{-}}\right)}
\end{gathered}
$$

ABLA succeeds: But only when non-unary regular connectives appear exclusively in the skeleton.

Spelling out the approximation rule

We have:

$$
\boldsymbol{i} \leq \psi_{1} \oplus \psi_{2} \quad \Leftrightarrow
$$

- $[\boldsymbol{i} \leq 0 \oplus 0]$ OR
- $\left[\boldsymbol{i} \leq \boldsymbol{j}_{1} \oplus 0 \& \boldsymbol{j}_{1} \leq \psi_{1}\right]$ OR
- $\left[\boldsymbol{i} \leq 0 \oplus \boldsymbol{j}_{2} \& \boldsymbol{j}_{2} \leq \psi_{2}\right]$ OR
$-\left[\boldsymbol{i} \leq \boldsymbol{j}_{1} \oplus \boldsymbol{j}_{2} \& \boldsymbol{j}_{1} \leq \psi_{1} \& \boldsymbol{j}_{2} \leq \psi_{2}\right]$.

An example

$$
\begin{array}{ll}
& \forall[(p \ominus q) \oplus q \leq p \vee q] \\
\text { iff } & \forall[\boldsymbol{i} \leq(p \ominus q) \oplus q \& \boldsymbol{p} \vee q \leq \boldsymbol{m} \Rightarrow \boldsymbol{i} \leq \boldsymbol{m}] \\
\text { iff } & \forall\left[\boldsymbol{i} \leq\left(\boldsymbol{j}_{1} \ominus \boldsymbol{n}\right) \oplus \boldsymbol{j}_{2} \& \boldsymbol{j}_{1} \leq \boldsymbol{m} \& \boldsymbol{j}_{2} \leq \boldsymbol{n} \& \boldsymbol{j}_{2} \leq \boldsymbol{m} \Rightarrow \boldsymbol{i} \leq \boldsymbol{m}\right] \&[\ldots] \\
\text { iff } & \forall\left[\boldsymbol{j}_{1} \leq \boldsymbol{m} \& \boldsymbol{j}_{2} \leq \boldsymbol{n} \& \boldsymbol{j}_{2} \leq \boldsymbol{m} \Rightarrow\left(\boldsymbol{j}_{1} \ominus \boldsymbol{n}\right) \oplus \boldsymbol{j}_{2} \leq \boldsymbol{m}\right] \&[\ldots]
\end{array}
$$

Which yields the following structural rule:

$$
Ł 3 \frac{X_{1}+Y_{1} \quad X_{2}+Y_{2} \quad X_{2}+Y_{3}}{\left(X_{1} \hat{\theta} Y_{2}\right) \hat{\oplus} X_{2}+Y_{1} \check{v} Y_{3}}
$$

The red bracket

- We have 3 cases:

1. $\boldsymbol{i} \leq 0 \oplus 0 \& p \vee q \leq \boldsymbol{m} \Rightarrow \boldsymbol{i} \leq \boldsymbol{m}$.
2. $\boldsymbol{i} \leq j_{2} \& j_{2} \leq q \& p \vee q \leq \boldsymbol{m} \Rightarrow \boldsymbol{i} \leq \boldsymbol{m}$.
3. $\boldsymbol{i} \leq j_{1} \& j_{1} \leq p \ominus q \& p \vee q \leq \boldsymbol{m} \Rightarrow \boldsymbol{i} \leq \boldsymbol{m}$.

- All 3 cases are tautological statements.

Putting everything together

$$
\begin{gathered}
A::=p|\top| \perp|\neg A| A \sqcap A \mid A \sqcup A \\
\alpha::=[\ni] A \mid\langle\nexists\rangle A \\
\phi::=\langle v\rangle \alpha\left|\left[v^{c}\right] \alpha\right| 1|0| \sim \phi|\phi \wedge \phi| \phi \vee \phi|\phi \oplus \phi| \phi \ominus \phi
\end{gathered}
$$

A1. From $A \vdash B$ infer $\langle v\rangle[\ni] A \vdash\left[v^{c}\right]\langle\nexists\rangle B$;
A2. $\langle v\rangle[\ni] A(\neg A) \vdash \sim\langle v\rangle[\ni] A$ and $\sim\left[v^{c}\right]\langle\nexists\rangle A \vdash\left[v^{c}\right]\langle\nexists\rangle \neg A$;
АЗа. $\left(\langle v\rangle[\ni] A \ominus\left[v^{c}\right]\langle\nexists\rangle(A \wedge B)\right) \oplus\langle v\rangle[\ni] B \vdash\left[v^{c}\right]\langle\nexists\rangle(A \vee B)$;
A3b. $\langle v\rangle[\ni](A \vee B) \vdash\left(\left[\nu^{c}\right]\langle\nexists\rangle A \ominus\langle v\rangle[\ni](A \wedge B)\right) \oplus\left[v^{c}\right]\langle\nexists\rangle B ;$
Nec. from $T \vdash A$ infer $1 \vdash\left[v^{c}\right]\langle\nexists\rangle A$.

Structural rules

- A1.

$$
\mathrm{m} \frac{\langle\hat{\nexists}\rangle\langle\hat{\epsilon}\rangle \Gamma \vdash \Delta}{\left\langle\hat{\Lambda}^{c}\right\rangle\langle\hat{v}\rangle \Gamma \vdash \Delta}
$$

- A3a.

$$
\frac{\langle\hat{\nexists}\rangle(\langle\hat{\epsilon}\rangle X \hat{\Pi}\langle\hat{\epsilon}\rangle Y)+Z \quad\langle\hat{\nexists}\rangle\langle\hat{\epsilon}\rangle X \vdash W \quad\langle\hat{\nexists}\rangle\langle\hat{\epsilon}\rangle Y \vdash W}{\langle\hat{v}\rangle X \hat{\oplus}\left(\langle\hat{v}\rangle Y \hat{\theta}\left[\check{\nu}^{c}\right] Z\right)+\left[\check{v}^{c}\right] W}
$$

- Nec.

$$
N \frac{\langle\hat{\boldsymbol{\beta}\rangle \hat{\top}+\Gamma}}{\hat{1}+\left[\tilde{\nu}^{c}\right] \Gamma}
$$

A glimpse of completeness

$$
\begin{gathered}
\frac{\frac{A+B}{[\ni] A+[\ni ૅ] B}}{\langle\hat{\epsilon}\rangle[\ni] A+B} \\
\mathrm{M} \\
\frac{\langle\hat{\nexists}\rangle\langle\hat{\epsilon}\rangle[\ni] A+\langle\nexists\rangle B}{\left\langle\hat{\kappa}^{c}\right\rangle\langle\hat{v}\rangle[\ni] A+\langle\nexists\rangle B} \\
\frac{\langle\hat{v}\rangle[\ni] A+\left[\check{v}^{c}\right]\langle\nexists\rangle B}{\langle\hat{v}\rangle[\ni] A+\left[v^{c}\right]\langle\nexists\rangle B} \\
\langle v\rangle[\ni] A+\left[v^{c}\right]\langle\nexists\rangle B \\
\mathrm{~N}
\end{gathered}
$$

A glimpse of soundness

The most important question:

$$
\xlongequal{\frac{X \hat{\oplus} Y+Z}{Y+Z \text { ध̌ } Y}}
$$

Conclusions

- Proof system for probabilistic logics
- General and modular tools to tackle the problems
- What about cut elimination?

