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▸ Assumptions:
▸ Everyday life reasoning is based on incomplete information and uncertain

premises, conclusions are defeasible.
▸ People interpret the uncertainty of If A, then C by p(C ∣A).
▸ Rationality framework: coherence-based probability logic

▸ Computational level problem description (in the sense of Marr, 1982): reason to an
interpretation of the premises and to draw a rational conclusion. This
requires to

1. make any implicit assumptions and logical relations explicit,
2. assign uncertainty to the premises, and
3. transmit the uncertainty from the premises to the conclusion.

▸ Long term goal: development of a unified, normative and descriptively
adequate theory of human reasoning under uncertainty
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p(A ∧ C)

p(A)
, provided that p(A) > 0

In the coherence approach, conditional probability, p(C ∣A), is primitive and
properly managed even if p(A) = 0

▸ zero probabilities are exploited to reduce the complexity
▸ imprecision
▸ logical operations on conditional events (without triviality)
▸ bridges to possibility, fuzzy sets, nonmonotonic reasoning, . . .

▸ Probability logic
▸ uncertain argument forms
▸ deductive transmission of the uncertainties from the premises to the conclusion
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▸ monotonic versus nonmonotonic arguments: most people draw coherent

inferences and understand that monotonic arguments are probabilistically
non-informative (Pfeifer & Kleiter, 2005, 2010; Pfeifer & Tulkki, 2017b)

▸ conditional syllogisms: e.g., probabilistic modus ponens (from p(C ∣A) and

p(A) infer p(C)) is easier for people compared to the probabilistic modus
tollens (from p(C ∣A) and p(¬C) infer p(¬A)) (Pfeifer & Kleiter, 2007, 2009)

▸ Argumentation
▸ Formal measure of argument strength (Pfeifer, 2007, 2013b), which
▸ allows for rationally reconstructing data observed in the Ellsberg Paradox

(Pfeifer & Pankka, 2017)

▸ Conditionals
▸ Paradoxes of the material conditional (e.g., from C infer A→ C), are

probabilistically non-informative and hence blocked in mental probability logic.
This matches the data (Pfeifer & Kleiter, 2011; Pfeifer, 2014).

▸ Observed response tendencies in tasks involving negations in samples of
Westerners did not differ from a Japanese sample: a first step towards
cross-cultural comparisons (Pfeifer & Yama, 2017)
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Probabilistic truth table task (Evans, Handley, & Over, 2003; Oberauer & Wilhelm, 2003)

p(A ∧ C) = x1

p(A ∧ ¬C) = x2

p(¬A ∧ C) = x3

p(¬A ∧ ¬C) = x4

p(If A, then C) = ?

Main results:

▸ more than half of the responses are consistent with p(C ∣A)

▸ many responses are consistent with p(A ∧ C)

▸ sample task material (sides of a die):

Iterated version: interpretation shifts to p(C ∣A) (Fugard, Pfeifer, Mayerhofer, & Kleiter,

2011; Kleiter, Fugard, & Pfeifer, 2018)
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▸ the conditional is formulated as a causal conditional (if drug taken, then

symptoms diminished) (Over et al., 2007; Pfeifer & Stöckle-Schobel, 2015; Pfeifer & Tulkki, 2017b) or
as an abductive conditional (if symptoms diminished, then drug taken)
(Pfeifer & Tulkki, 2017a) or as . . .

▸ . . . a counterfactual, i.e., fact (not A) plus If A were the case, C would be the

case (see, e.g., Pfeifer & Stöckle-Schobel, 2015; Pfeifer & Tulkki, 2017a)

▸ data are also robust for conditionals which violate ∆p:

∆p = p(C ∣A) − p(C ∣¬A) > 0



Brief overview on experimental evidence

Comments on inferentialist accounts of conditionals

▸ Inferentialist accounts claim that some inferential connection between the
antecedent A and the consequent C is needed in order to build a belief in the
conditional A→ C , which could, for example be
▸ deductive, inductive, or abductive (see, e.g., Douven, Elqayam, Singmann, & Wijnbergen-Huitink,

2020)



Brief overview on experimental evidence

Comments on inferentialist accounts of conditionals

▸ Inferentialist accounts claim that some inferential connection between the
antecedent A and the consequent C is needed in order to build a belief in the
conditional A→ C , which could, for example be
▸ deductive, inductive, or abductive (see, e.g., Douven, Elqayam, Singmann, & Wijnbergen-Huitink,

2020); or
▸ the relevance of A for C ; which can be measured by, e.g., by ∆p (see, e.g.,

Skovgaard-Olsen et al., 2016).



Brief overview on experimental evidence

Comments on inferentialist accounts of conditionals

▸ Inferentialist accounts claim that some inferential connection between the
antecedent A and the consequent C is needed in order to build a belief in the
conditional A→ C , which could, for example be
▸ deductive, inductive, or abductive (see, e.g., Douven, Elqayam, Singmann, & Wijnbergen-Huitink,

2020); or
▸ the relevance of A for C ; which can be measured by, e.g., by ∆p (see, e.g.,

Skovgaard-Olsen et al., 2016).

▸ In the probabilistic truth table tasks (Pfeifer & Stöckle-Schobel, 2015; Pfeifer & Tulkki, 2017a),
conditional probability judgments neither depend on
▸ whether the task material is formulated in terms of indicatives/counterfactuals
▸ nor on whether the content is non-causal/causal/abductive.

This is inconsistent with inferentialist accounts.



Brief overview on experimental evidence

Comments on inferentialist accounts of conditionals

▸ Inferentialist accounts claim that some inferential connection between the
antecedent A and the consequent C is needed in order to build a belief in the
conditional A→ C , which could, for example be
▸ deductive, inductive, or abductive (see, e.g., Douven, Elqayam, Singmann, & Wijnbergen-Huitink,

2020); or
▸ the relevance of A for C ; which can be measured by, e.g., by ∆p (see, e.g.,

Skovgaard-Olsen et al., 2016).

▸ In the probabilistic truth table tasks (Pfeifer & Stöckle-Schobel, 2015; Pfeifer & Tulkki, 2017a),
conditional probability judgments neither depend on
▸ whether the task material is formulated in terms of indicatives/counterfactuals
▸ nor on whether the content is non-causal/causal/abductive.

This is inconsistent with inferentialist accounts. Participants’ judgments are
also independent of ∆p.



Brief overview on experimental evidence

Comments on inferentialist accounts of conditionals
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antecedent A and the consequent C is needed in order to build a belief in the
conditional A→ C , which could, for example be
▸ deductive, inductive, or abductive (see, e.g., Douven, Elqayam, Singmann, & Wijnbergen-Huitink,

2020); or
▸ the relevance of A for C ; which can be measured by, e.g., by ∆p (see, e.g.,

Skovgaard-Olsen et al., 2016).

▸ In the probabilistic truth table tasks (Pfeifer & Stöckle-Schobel, 2015; Pfeifer & Tulkki, 2017a),
conditional probability judgments neither depend on
▸ whether the task material is formulated in terms of indicatives/counterfactuals
▸ nor on whether the content is non-causal/causal/abductive.

This is inconsistent with inferentialist accounts. Participants’ judgments are
also independent of ∆p.

▸ Centering (from A and C infer A→ C) holds in probability logic (Sanfilippo et al., 2018), but not
in inferentialist accounts (e.g. Douven, 2016, p. 40). Most people endorse centering
(e.g., Cruz et al., 2016; Pfeifer & Tulkki, 2017b), which is not consistent with inferentialism.



Further theoretical developments (3 examples)

Table of contents

What is Mental Probability Logic?

What is a rationality framework?

Brief overview on experimental evidence

Further theoretical developments (3 examples)

Concluding remarks
References



Further theoretical developments (3 examples)

Example 1: Connexivity (overviews on connexive logic: McCall, 2012; Wansing, 2020)

Conditionals of the form
¬A→ A

should not hold.



Further theoretical developments (3 examples)

Example 1: Connexivity (overviews on connexive logic: McCall, 2012; Wansing, 2020)

Conditionals of the form
¬A→ A

should not hold.

This is intuitively plausible and matches experimental-psychological data
(e.g. Pfeifer, 2012, 2021).



Further theoretical developments (3 examples)

Example 1: Connexivity (overviews on connexive logic: McCall, 2012; Wansing, 2020)

Conditionals of the form
¬A→ A

should not hold.

This is intuitively plausible and matches experimental-psychological data
(e.g. Pfeifer, 2012, 2021).

Under the material conditional interpretation of conditionals, however, it holds
that:

(¬A ⊃ A) ≡ (¬¬A ∨A) ≡ A .
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Example 1: Connexivity (overviews on connexive logic: McCall, 2012; Wansing, 2020)

Conditionals of the form
¬A→ A

should not hold.

This is intuitively plausible and matches experimental-psychological data
(e.g. Pfeifer, 2012, 2021).

Under the material conditional interpretation of conditionals, however, it holds
that:

(¬A ⊃ A) ≡ (¬¬A ∨A) ≡ A .

The basic connexive intuition is covered by the observation that for any event A,
with ¬A ≠ �, event A∣¬A is

P(A∣¬A) = 0,

where 0 is the only coherent value (Pfeifer & Sanfilippo, 2021).



Further theoretical developments (3 examples)

Example 1: Connexive principles (Wansing, 2020)

● Aristotle’s Thesis (AT): ¬(¬A→ A)

● Aristotle’s Thesis’ (AT)′: ¬(A→ ¬A)

● Abelard’s First Principle (AB): ¬((A→ B) ∧ (A→ ¬B))

● Aristotle’s Second Thesis (AS): ¬((A→ B) ∧ (¬A→ B))

● Boethius’ Thesis (BT): (A→ B) → ¬(A→ ¬B)

● Boethius’ Thesis’ (BT)′: (A→ ¬B) → ¬(A→ B)

● Reversed Boethius’ Thesis (RBT): ¬(A→ ¬B)→ (A→ B)

● Reversed Boethius’ Thesis’ (RBT)′: ¬(A→ B) → (A→ ¬B)

● Boethius Variation 3 (B3): (A→ B)→ ¬(¬A→ B)

● Boethius Variation 4 (B4): (¬A→ B)→ ¬(A→ B)
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Example 1: Valid in probability logic? (Pfeifer & Sanfilippo, 2021)

● Aristotle’s Thesis (AT): ¬(¬A→ A) ✓

● Aristotle’s Thesis’ (AT)′: ¬(A→ ¬A) ✓

● Abelard’s First Principle (AB): ¬((A→ B) ∧ (A→ ¬B)) ✓

● Aristotle’s Second Thesis (AS): ¬((A→ B) ∧ (¬A→ B)) ×

● Boethius’ Thesis (BT): (A→ B) → ¬(A→ ¬B) ✓

● Boethius’ Thesis’ (BT)′: (A→ ¬B) → ¬(A→ B) ✓

● Reversed Boethius’ Thesis (RBT): ¬(A→ ¬B)→ (A→ B) ✓/×

● Reversed Boethius’ Thesis’ (RBT)′: ¬(A→ B) → (A→ ¬B) ✓/×

● Boethius Variation 3 (B3): (A→ B)→ ¬(¬A→ B) ×

● Boethius Variation 4 (B4): (¬A→ B)→ ¬(A→ B) ×



Further theoretical developments (3 examples)

Further theoretical developments

Example 2: We developed a coherence-based probability semantics for
Aristotelian syllogisms (Gilio, Pfeifer, & Sanfilippo, 2016; Pfeifer & Sanfilippo, 2018, 2019,

submitted), which

▸ respects the logical structure of the argument forms,
▸ uses very weak existential import assumptions (weaker than

assuming p(S) > 0),
▸ allows for dealing with generalised quantifiers,
▸ constitutes a bridge to nonmonotonic reasoning, and
▸ explains the logical relations among the basic syllogistic

sentence types in terms of the probabilistic square and
hexagon of opposition (Pfeifer & Sanfilippo, 2017a, 2017b).
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Example 2: We developed a coherence-based probability semantics for
Aristotelian syllogisms (Gilio, Pfeifer, & Sanfilippo, 2016; Pfeifer & Sanfilippo, 2018, 2019,

submitted), which

▸ respects the logical structure of the argument forms,
▸ uses very weak existential import assumptions (weaker than

assuming p(S) > 0),
▸ allows for dealing with generalised quantifiers,
▸ constitutes a bridge to nonmonotonic reasoning, and
▸ explains the logical relations among the basic syllogistic

sentence types in terms of the probabilistic square and
hexagon of opposition (Pfeifer & Sanfilippo, 2017a, 2017b).

Example 3: Generalisation of Modus Ponens and explanation why participants’
responses in the indicative/counterfactual conditions in the
probabilistic truth table task do not differ.
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From modus ponens to generalised modus ponens

Modus ponens Generalised modus ponens
(Categorical premise) A A∣H
(Conditional premise) If A, then C If A∣H , then C

(Conclusion) C C

Sample instantiation (Gibbard, 1981, p. 237):
A∣H

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
The cup breaks if dropped.

If

A∣H
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
the cup breaks if dropped, then

C

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
the cup is fragile.

Therefore,

C

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
the cup is fragile.
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C ? ≤ p(C) ≤ ?
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Generalised Probabilistic MP (Sanfilippo, Pfeifer, & Gilio, 2017)

Generalised modus ponens Generalised probabilistic modus ponens
A∣H p(A∣H) = x

If A∣H , then C P(C ∣(A∣H)) = y

C ? ≤ p(C) ≤ ?

What does the conditional premise mean? It is a conditional random quantity.

How can we assess its uncertainty? By its prevision (denoted by P).

In betting terms, µ = P[C ∣(A∣H)] represents the amount you agree to pay, with
the proviso that you will receive the quantity (Gilio & Sanfilippo, 2013b):

C ∣(A∣H) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1, if A ∧H ∧ C true,
0, if A ∧H ∧ ¬C true,
µ, if ¬A ∧H true,
x + µ(1 − x), if ¬H ∧ C true,
µ(1 − x), if ¬H ∧ ¬C true.
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Generalised Probabilistic MP (Sanfilippo, Pfeifer, & Gilio, 2017)

Generalised modus ponens Generalised probabilistic modus ponens
A∣H p(A∣H) = x

If A∣H , then C P(C ∣(A∣H)) = y

C ? ≤ p(C) ≤ ?

What does the conditional premise mean? It is a conditional random quantity.

How can we assess its uncertainty? By its prevision (denoted by P).

In betting terms, µ = P[C ∣(A∣H)] represents the amount you agree to pay, with
the proviso that you will receive the quantity (Gilio & Sanfilippo, 2013b):

C ∣(A∣H) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1, if A ∧H ∧ C true,
0, if A ∧H ∧ ¬C true,
µ, if ¬A ∧H true,
x + µ(1 − x), if ¬H ∧ C true,
µ(1 − x), if ¬H ∧ ¬C true.

Since (C ∣A)∣H≠C ∣(A ∧H), the Import-Export Principle does not hold. Thus,
Lewis’ first triviality result (1976) is avoided (Gilio & Sanfilippo, 2014).
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Generalised modus ponens (Sanfilippo, Pfeifer, & Gilio, 2017, Theorem 5, p. 487)

Generalised modus ponens Generalised probabilistic modus ponens
A∣H p(A∣H) = x

If A∣H , then C P(C ∣(A∣H)) = y

C ? ≤ p(C) ≤ ?

How do we propagate the uncertainty from the premises to the conclusion?

Theorem

Given any coherent assessment (x , y) on {A∣H ,C ∣(A∣H)}, with A,C ,H logically

independent, but A ≠ � and H ≠ �. The conclusion p(C) is coherent iff

xy ≤ p(C) ≤ xy + 1 − x



Further theoretical developments (3 examples)

Generalised modus ponens (Sanfilippo, Pfeifer, & Gilio, 2017, Theorem 5, p. 487)

Generalised modus ponens Generalised probabilistic modus ponens
A∣H p(A∣H) = x

If A∣H , then C P(C ∣(A∣H)) = y

C ? ≤ p(C) ≤ ?

How do we propagate the uncertainty from the premises to the conclusion?

Theorem

Given any coherent assessment (x , y) on {A∣H ,C ∣(A∣H)}, with A,C ,H logically

independent, but A ≠ � and H ≠ �. The conclusion p(C) is coherent iff

xy ≤ p(C) ≤ xy + 1 − x ,

which are just the same probability propagation rules as in the non-nested
probabilistic modus ponens, i.e., from p(A) = x and p(C ∣A) = y infer

xy ≤ P(C) ≤ xy + 1 − x .
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Explanation of why responses in the
indicative/counterfactual conditions should not differ

Theorem (see, e.g. Gilio & Sanfilippo, 2013a):

belief in counterfactual
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Prevision [(C ∣A) ∣

fact
«
¬A ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cond. random quantity

=

belief in indicative conditional
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Probability (C ∣

assumed
©
A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cond.event

) .
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Concluding remarks

Concluding remarks
▸ Coherence-based probability logic provides a rich and unified rationality

framework, including
▸ meanings of conditionals (embracing indicative conditionals, simple and

nested, and counterfactuals) and their behaviour in uncertain argument forms
▸ nonmonotonic reasoning
▸ conditional syllogisms
▸ measuring argument strength
▸ paradoxes of the material conditional
▸ connexive principles
▸ Aristotelian syllogisms
▸ Probabilistic square and hexagon of opposition

▸ Choice of the interpretation of probability is crucial (e.g., managing
zero-probability antecedents, etc.)

▸ Focus should be on uncertainty propagation

niki.pfeifer@ur.de

https://go.ur.de/np

mailto:niki.pfeifer@ur.de
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